
Reviewer Recommender of Pull-Requests in GitHub

Yue Yu∗, Huaimin Wang∗, Gang Yin∗, Charles X. Ling†
∗National Laboratory for Parallel and Distributed Processing,

College of Computer, National University of Defense Technology, Changsha, 410073, China
†Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

{yuyue,hmwang,yingang}@nudt.edu.cn, cling@csd.uwo.ca

Abstract—Pull-Request (PR) is the primary method for code
contributions from thousands of developers in GitHub. To main-
tain the quality of software projects, PR review is an essential
part of distributed software development. Assigning new PRs
to appropriate reviewers will make the review process more
effective which can reduce the time between the submission of a
PR and the actual review of it. However, reviewer assignment
is now organized manually in GitHub. To reduce this cost,
we propose a reviewer recommender to predict highly relevant
reviewers of incoming PRs. Combining information retrieval with
social network analyzing, our approach takes full advantage
of the textual semantic of PRs and the social relations of
developers. We implement an online system to show how the
reviewer recommender helps project managers to find potential
reviewers from crowds. Our approach can reach a precision of
74% for top-1 recommendation, and a recall of 71% for top-10
recommendation. http://rrp.trustie.net/

Keywords—Pull-request, Reviewer Recommendation, Social
Network Analysis, Distributed Software Development

I. INTRODUCTION

GitHub1, a popular social coding community [1], attracts a

large number of software projects hosted on it. Pull-Request

(PR) is the primary method [2], [3] for code contributions

from thousands of developers. Currently, it is not uncommon

in the popular projects to receive tens of PRs daily covering

nearly 60% of code commits from contributors.

Pull
Request

Pull
Request

Review CommentsContributor

Judge

Closed

Core Team

Merge

Reject

Submits

Discuss

Issue Tracker

Discuss

Update

Discuss

PR
PR

PR
PR PR

PR

Project
Repository

Clone
Repository

Figure 1. The overview of pull-request mechanism

The overview of PR mechanism is presented as Figure 1.

Firstly, a contributor implements some new features or fixes

bugs based on his personal repository cloned from the latest

version of project repository. When his work is finished, the

patches are packaged as a PR submitted to the issue tracker.

The system open a new issue for this PR, and then add

the issue to an awaiting list to be reviewed. In GitHub, the

1https://github.com/

traditional review process is transformed into a crowdsourcing

job. Not only core developers but also external developers in

the community can act as reviewers. The reviewers can freely

discuss the PR with the contributor and core developers in

terms of their interests and expertise. Next, in the light of

reviewers’ suggestions, the contributor would update his pull-

request by attaching new commits, and then reviewers discuss

that PR again. Finally, the responsible mangers of the core

team take all the opinions of reviewers into consideration, and

then merges or rejects that PR. Thus, we can see PR review

is an important way to maintain the quality of the software.

Assigning incoming PRs to appropriate reviewers will make

PR review more effective, because it can reduce the time

between the submission of a PR and the actual review of

it. We refer to the period between the time when a PR is

submitted into issue tracker and the time when it begins to

be discussed by reviewers as review latency. The PRs which

have been assigned to reviewers have lower review latency

than those without assignment. According to our analysis,

the time of the recommended reviewer submitting his first

comment on PR is on average 40.8 hours shorter than those

without recommendation. However, reviewer assignment is

now organized manually in GitHub. As each developer in

community has the chance to join the review discussions, the

project managers may not completely find out all potential

reviewers from crowds.

To reduce this cost, we designed a reviewer recommender

to predict appropriate reviewers for incoming PRs in Github.

The two key intuitions of our approach focus on the textual

semantic of PRs and the social relations of contributors.

• The expertise of a reviewer can be learned from his

PR-commenting history. For a newly received PR, the

developers who have commented similar PR frequently

in the past are the suitable candidates to review the new

one.

• The common interests among developers can be measured

by social relations between contributors and reviewers in

historical PRs. The developers who share more common

interests with the contributor are the appropriate review-

ers of his incoming PRs.

Thus, we propose a novel approach combining information

retrieval with social network analyzing to recommend highly

relevant reviewers. We demonstrated the efficiency of our

approach on 10 popular projects which have received over

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.107

610

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.107

609

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.107

609

1000 PRs in GitHub. On average, our reviewer recommender

can reach a precision of 74% on the top-1 recommendation

and a recall of 71% on top-10 recommendation.

II. EXITING TOOLS AND RELATED WORK

A. Exiting Tools and Motivation

Notifications in Github are based on the repositories you

are watching. Each project watcher will mechanically receive

notifications of all newly received PRs. In this way, the PRs

which the developer really cares about would be drowned out

by a massive amount of noise.

To triage PRs, the project managers can use a label to assign

a new PR to one of core developer. The assignee is in charge of

the review process. However, only 0.89% of PRs have been set

that label in our dataset. Besides, the @mention tool is widely

used in the discussion of PR review. If a @ symbol placed in

front of a user’s ID, the corresponding developer will receive

a special notification that he has been mentioned in the PR

and his ID would be highlighted.

Figure 2. An example of discussion among reviewers in a pull-request

Taking a real PR of Ruby on Rails as an example, as shown

in Figure 2, no one is assigned to this PR. A core developer

called rafaelfranca is the first reviewer to comment the PR. As

he considers that javan’s work would be relevant, he mentions

(@) javan to join the discussion. At the second post, we

can see that javan indeed presents his opinion. Apart from

javan who is informed by rafaelfranca, other three reviewers

comment that PR spontaneously. Because all the comments

affect the decision-making of that PR, if they do not catch it

timely, it is possible that some vital opinions would be lost.

Thus, if appropriate reviewers are automatically recom-

mended when a new pull-request is submitted, the review

process would be more efficient. It is worth mentioning that the

novel application of reviewer recommender can be seamlessly

integrated with the social media of peer-to-peer notification,

such as the @mention tool in GitHub that adds the @ tags

to the potential reviewers automatically. Actually, we also

can provide an independent service for each OSS community,

when the enough data has been shared and collected.

B. Related Work

We review the similar researches of reviewer recommenda-

tion in bug triaging and code (patch) review in this section.

The most representative researches are based on machine

learning and information retrieval techniques to triage incom-

ing bug reports. For example, Anvik et al. [4] apply a machine

learning algorithm to learn the kinds of reports each developer

resolves and recommend developers for a new bug report.

Kagdi and Poshyvanyk [5], [6] extract the comments and

identifiers from the source code and index these data by Latent

Semantic Indexing (LSI). For a new bug report, such indexes

can be useful to identify the most appropriate developers to

resolve it. To support code review, Balachandran [7] designs

a tool called Review Bot to predict the developers who

have modified related code sections frequently as appropriate

reviewers. Compared to the Review Bot, Thongtanunam et al.

[8] recommends code reviewers from developers who have

examined files with similar directory paths.

All these approaches focus on mining the related text, such

as bug descriptions and code files, but the social relations

among developers are ignored. However, the process of PR

review is more likely to rely on the discussions among review-

ers to be resolved. These discussions occurred over artifacts

may imply reviewers common interests in social activities and

division of work in projects. Thus, we consider the relations

reflected by the artifact-mediated communication is a key

factor of recommendation. Begel et al. [9] present a framework

for connecting developers and their work artifacts together. In

this paper, we propose a novel and lightweight approach that

combines information retrieval with social network analyzing

to recommend appropriate reviewers for new PRs.

III. METHODOLOGY

Firstly, the titles and descriptions of PRs are extracted and

indexed using the Vector Space Model. Then, we measure

semantic similarity between the new PR and each one of

historical PRs, and predict the expertise score of a developer

according to the number of comments he has submitted.

Furthermore, we construct a comment network for each project

separately by analyzing the comment relations among devel-

opers. In a specific project, we can predict the common interest

of each reviewer shared with the PR contributor based on the

comment network. Finally, we synthesize the expertise scores

and the common interests to rank all candidates.

A. Vector Space Model of Pull-Request

Each PR is characterized by its title and description, and

labeled with a set of names about developers who had sub-

mitted at least one comment to it. Then, all stop words and

non-alphabetic tokens are removed, and remaining words are

611610610

stemmed. We use the vector space model to represent each PR

as a weighted vector. Each element in the vector is a term, and

the value stands for its importance for the PR. Term frequency-

inverse document frequency (tf-idf) is utilized to indicate the

value of a term, which can be calculated as Equation 1.

tfidf(t, pr, PR) = log(
nt

Npr

+1)×log
NPR

|pr ∈ PR : t ∈ pr| (1)

where t is a term, pr is a pull-request, PR is the corpus of all

pull-requests in a given project, nt is the count of appearance

for term t in pr, and Npr and NPR
are the total number of

terms in pr and pull-requests in corpus respectively.

B. Semantic Similarity and Expertise Score

For a newly recieved PR, we firstly retrieve top-k relevant

PRs from our corpus. We use cosine similarity to measure

the semantic similarity between a new PR and each of the re-

solved PRs. We consider that the more frequency the reviewer

has commented relevant PRs, the more knowledgeable that

reviewer is in handling the new PR. Therefore, the expertise

score of a reviewer can be predicted based on the number of

comments which they has published in the top-k relevant PRs

(i.e., cosine similarity score times the number of comments).

C. Comment Network and Common Interest

We consider that common interests among developers are

project-specific, so we build a comment network for each

project separately. In a given project, the structure of comment

relations is a many-to-many model. There are many contribu-

tors have submitted PRs to a project, and a contributor can be

a reviewer to comment other contributors’ PRs. A PR would

be commented by several reviewers more than once.

The comment network is defined as a weighted directed

graph Gcn = 〈V,E,W 〉, where the set of developers is

indicated as vertices V and the set of relations between nodes

as edges E. If node vj has reviewed at least one of vi’s PRs,

there is a edge eij from vi to vj . The set of weights W reflects

the importance degree of edges, and the weight wij of eij can

be evaluated by Equation 2.

wij =
k∑

r=1

w(ij,r) = Pc ×
k∑

r=1

m∑

n=1

λn−1 × t(ij,r,n) (2)

where k is the total number of PR submitted by vi, and w(ij,r)

is a component weight related to an individual PR r. Pc is

an empirical default value2 (set to 1.0), which is reserved to

estimate the influence of each comment on the PR, and m
is the sum of comments submitted by vj in the same PR r.

When reviewer vj published multiple comments (m �= 1) in

the same PR, his influence is controlled by a decay factor λ
(set to 0.8). The element t(ij,r,n) is a time-sensitive factor of

corresponding comment which can be calculated as below:

t(ij,r,n) =
timestamp(ij,r,n) − baseline

deadline− baseline
∈ (0, 1] (3)

2User comments can be found in pull-requests, issue posts and commit
files. Here, we just use the comments of pull-request.

where timestamp(ij,r,n) is the date that reviewer vj presented

the comment n in the PR r which is reported by contributor vi.
The baseline and deadline are highly related to the selection

of training set. If we use the data from 2012-01-01 to 2013-05-

31 to learn the weights, the parameters baseline and deadline
are set to 2011-12-31 and 2013-05-31 respectively.

v2 commented v1's PR_1 on 2012-12-03
v2 commented v1's PR_1 on 2013-01-12
v2 commented v1's PR_2 on 2013-05-07
v3 commented v1's PR_2 on 2013-05-06

v1 commented v4's PR……
v2 commented v4's PR……
v4 commented v1's PR……

Project:

Ruby on Rails

w 13
=

0.9
5

v3 v4

v2v1

w12=2.19

w42=?w41
=?

Figure 4. An example of the comment network

Figure 4 shows an example of a part of comment network
about Ruby on Rails. Two different PRs (PR_1 and PR_2)

reported by v1 have been commented by v2 and v3, so there

are two edges from v1 to v2 and v1 to v3. Evaluating the

relation between v1 and v2, k of Equation 2 equals 2, because

v2 reviewed both two pull-requests. For PR_1, v2 commented

it twice, so we set m = 2. The first time-sensitive factor of

the date 2013-12-03 can be computed by Equation 3 that

t(12,1,1) ≈ 0.654. In addition, at the date of 2013-01-12

(t12,1,2 ≈ 0.731), another review published by v2 in PR_1
should be controlled by λ (set to 0.8) due to the diminishing

impact of one user in the same PR, so w(12,1) can be calculated

as: Pc × (t(12,1,1) + λ2−1 × t(12,1,2)) ≈ 1.24. Similarly, the

weight w12 = w(12,1) + w(12,2) = 2.19, and w13 = 0.95.

Thus, we can predict that reviewer v2 share more common

interests with contributor v1 compared with v3, which has been

quantified by the corresponding weights of edges.

The comment network has several desirable qualities.

• The global collaboration structure is revealed between

contributors and reviewers in a given project.

• The time-sensitive factor t is introduced to guarantee that

the recent comments are more valuable for the weights

of edges than the old comments.

• The decay factor λ is introduced to guarantee the differ-

ence values between the comments submitted to multiple

PRs or single PR. For example, if reviewer vj commented

5 different PRs of vi and meanwhile vq commented one

of vi’s PRs 5 times, the weight of wij is larger than wiq .

D. Reviewer Recommendation

When a contributor submits a new PR, we use the PR text to

calculate expertise scores of candidates. Then, their common

interests can be calculated by starting from the contributor in

the comment network. In this paper, we regard that the factor

of common interest is as important as the factor of expertise

612611611

(a) Homepage of a project (b) Summary of a PR (c) Recommendation Result

Figure 3. The online system of reviewer recommender

in each project. Thus, we standardize the factors, and then

add them together to recommend top-k reviewers to the new

PR. In future, we plan to deeply analyze the influence of each

factor exerted on different projects.

IV. REVIEWER RECOMMENDER AND EXPERIMENT

We implement an online system of reviewer recommender

with B/S architecture. It consists of two parts: a backend server

that processes data and a web interface that interacts with the

user. In practice, our application would be the most effectively

used as a plug-in for social coding communities.

On the backend, the server can continuously collect and

analyze new PRs from GitHub. When a project receives a new

PR, it will be listed in its homepage (Figure 3 (a)). We extract

the key information of a PR such as the ID, description and

submitter, as shown in Figure 3 (b). Project managers can pick

an new PR from the awaiting list or submit a query for specific

PR by typing in the issue ID. The number of recommendation

can be set as required. Then, in Figure 3 (c), the predicted

result will be shown together with the measures. We evaluate

the performances of our approaches using precision and recall

which are widely used as standard metrics in previous work.

In that case, top-5 reviewers have been recommended, and 4

of them have actually commented that PR in reality. Hence,

the precision is 80% and the recall is 100%.

Figure 5. Precision vs. Recall of reviewer recommender

In this paper, we demonstrate the performances of our

approach on 10 popular projects which have received over

1000 pull-requests. We use the data from 2012-01-01 to

2013-05-31 as the training set and the data from 2013-06-

01 to 2013-10-01 as the test set. Figure 5 clearly exhibits the

overall performance of our approach. On average, the precision

reaches the highest point of 0.74 for top-1 recommendation

and the recall considerably ascends to 0.71 at the point of

top-10 recommendation. It means we can successfully hit

a majority of reviewer. Especially, high precision of top-1

recommendation is significant. As the example of Figure 2,

if the first reviewer can be predicted, he would remind other

reviewers to joint the discussion with @mentioning.

V. CONCLUSION AND FUTURE WORK

For a new PR, recommending reviewers will make the

review process more effective. In this paper, we propose a

novel approach that combine information retrieval with social

network analyzing. In the future, we plan to explore how to use

other types of social networks, such as the watcher network,

to improve the performance of our method.

VI. ACKNOWLEDGEMENT

This research is supported by the National High Technology

Research and Development Program of China (Grant No.

2012AA011201).

REFERENCES

[1] A. Begel, J. Bosch, and M.-A. Storey, “Social networking meets soft-
ware development: Perspectives from github, msdn, stack exchange, and
topcoder,” IEEE Software, vol. 30, no. 1, pp. 52–66, 2013.

[2] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE ’14, 2014,
pp. 356–366.

[3] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE ’14. New
York, NY, USA: ACM, 2014, pp. 345–355.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–370.

[5] H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, May 2009, pp. 273–277.

[6] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance, 28th IEEE In-
ternational Conference on, Sept 2012, pp. 451–460.

[7] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13, 2013, pp. 931–940.

[8] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida,
“Improving code review effectiveness through reviewer recommenda-
tions,” in Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering, ser. CHASE ’14, 2014, pp.
119–122.

[9] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: Discovering and
exploiting relationships in software repositories,” in Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ser. ICSE ’10, 2010, pp. 125–134.

613612612

